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Abstract

The issue of vorticity mode perturbation in Linearized Euler Equations (LEE) is addressed in this paper. We chose to
tackle this question by the point of view of source term formulation. It is numerically shown that the use of a rotational
free acoustic source term significantly reduces the development of the hydrodynamic mode. In accordance with the theory,
the proposed source term lead to a quasi total absence of vorticity mode in a spatially uniform mean flow, and a strong
reduction in a sheared mean flow.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The question of noise generated by turbulent flows is a major issue in many industrial applications. In the
transport industry, the reduction of noise and enhancement of sound comfort constitutes a commercial and
economic stake of foreground; one can evoke the civil aircrafts design which have to reduce the noise impact
on the population living by the airports; there is also several military situations where the control of noise is
crucial for safety or tactical reasons.

The mechanisms of noise generation are about known but they involve the fine scales of turbulence. The
engineering challenge in this domain is the question of predictability of the sound emitted by a flow in a given
situation. An important research activity has emerged in the development of efficient numerical tools for the
simulation of aeroacoustics. The prediction of what are the modifications of the radiated noise induced by
slight changes in the flow parameters or in the device design is still an important challenge.

The Navier–Stokes equations describe the behavior of a compressible fluid in a complete and exact way and
constitute for that the system to be solved to obtain simultaneously the dynamic and the acoustic solutions of a
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problem defined by boundary and initial conditions. The huge power of modern computers makes possible to
compute a DNS (for direct numerical simulation). One can then solve the whole range of scales involved in the
flow. This leads to ‘‘exact solutions” that can be considered as reference solutions. However this very powerful
technique is almost exclusively practicable within a research context because of its very high cost. The idea of
separately solving the aerodynamic (or hydrodynamic) problem and the acoustic propagation has been intro-
duced by Lighthill [1] in a famous article that marked the beginning of the modern aeroacoustic era. It has since
inspired other hybrid approaches and splitting techniques where the acoustic solution is given by a forced wave
operator, the forcing being modeled from the solution of the dynamic problem. For a detailed review of the
issues of computational aeroacoustics we recommend the recently published review article by Wang et al. [2].

Low Mach number flows constitute a real challenge for DNS. Indeed, for these flows, the characteristic
scales related to the flow dynamic and those related to the generated sound are very different. Then, computing
both of them in the same simulation (which is done in DNS) inevitably lead to the following issue: an error
that would be of acceptable magnitude in the flow study can be of the same order as the sound generated by
this flow. In such a situation, an hybrid approach is particularly suited [2]. For these flows, a one-way coupling
of the aerodynamic and acoustic phenomena can be undertaken by the use of incompressible assumption. The
large disparity in the scales is no longer problematic, and efficient numerical tools can be used at each step.

Up to now, the Lighthill analogy has been extensively used. Indeed, its formulation into a simple wave
equation and its resolution by the Green’s function makes it very appealing as well in the experimental inves-
tigations as in the numerical developments. Nevertheless, the Lighthill equation cannot clearly distinguish the
source generation phenomena from the so called propagation effects. This issue is theoretically not the main
one in the low Mach number flow framework when the base flow for the source computation is a compressible
simulation. However, in the case where the first step is an incompressible simulation, the Lighthill analogy
cannot account for the propagation effects in the source terms [3,4]. In this case, only an explicit formulation
of these terms can describe it. This is what was sought for in the analogies formulated by [5,6]. Whereas the
Phillips equation does not take all the propagation effects, the Lilley equation can account for the refraction
and convection effects in a non-uniform medium. The main difficulty posed by the Lilley equation is its dif-
ficult numerical resolution. More precisely, the solution to the Lilley equation contains homogeneous spatially
growing instability waves that become unbounded in transversally sheared mean flow.

More recently, the use of the linearized Euler’s equations (also called LEE in the remaining) has become
very popular: They can account for the propagation effects while allowing to distinguish the source generation
and the propagation parts. Moreover, their linear features make them attractive in a theoretical point of view
as well as for their numerical resolution.

Numerically, there are still some problems posed by the LEE. The first issue is linked to the fact that the LEE
can not only deal with acoustic waves in a non-uniform medium but also with the so called entropy and vorticity
modes. These last two fluctuating modes are convected by the mean flow. In a real flow, these fluctuations are
normally limited by the non-linearities of the motion equation and by viscosity. Some difficulties arise in the
LEE since their natural damping by non-linearities is no longer present in the solved equations. As a consequence
they can grow exponentially and perturb the acoustic solution. This problem corresponds to the one encountered
in the Lilley equation (it has been shown by [7] that in the transversally sheared mean flow, the LEE and the Lilley
equations are equivalent). They can either disturb the solution or make the simulation unstable.

Several techniques have been employed by previous authors to deal with this issue. The first attempts was to
add some non-linear terms in the LEE to avoid the exponential growth [8]. This works fine but reduces the
efficiency of the global method: the use of non-linear terms increases the computational cost (by increasing
the spatial and temporal resolution requirement) and complexity of the resolution [9]. Another solution pro-
posed by [7,10] was to use a reduced operator. Indeed, it was shown that the growth of the instability can be
associated with the interaction between acoustic waves and gradients of the mean flow. The reduced operator
is the LEE operator without these mean flow gradients. This leads to a reduction of the amplifications but is
still too weak in some strong cases to be able to perform a correct noise prediction. More recently, there was
some attempts to reformulate completely the wave operator such that it completely removes the vorticity
mode from the final solution. The acoustic perturbation equations of [11] is one, but its implementation
reaches a high level of complexity in the case of incompressible flows. In the same spirit [12] have proposed
the LPCE (for linearized perturbed compressible equations). Their purpose is the same as the APE, say they
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define a new wave operator which is completely vorticity mode free. Other authors, [13], proposed an analyt-
ical method to suppress the instability waves. Their approach completely removes these waves, but they
require to solve the problem directly in the frequency domain. Then their solution cannot be applied to
time-domain resolutions.

In the present paper, we propose to make benefit of the natural formulation of the acoustic sources to
reduce considerably the impact of the vorticity mode. By ‘‘natural formulation” we mean the source formu-
lation arising by the formal coupling between the Low Mach Number Approximation (called LMNA in the
following) and the LEE. In the next section, we will recall the different motion equations used in this study
(LMNA and LEE) and quickly explain how they lead to a source term formulation. We also explain why they
allow to reduce considerably the growing of the vorticity mode. In the third section, we apply these source
terms and compare them to the classical quadrupole expression, in the academic test case of two co-rotating
vortices.
2. Model equations

Following the numerical approach adopted for the simulation of non-isothermal flows by [14] for subsonic
regime, the low Mach number approximation was used to establish the set of equations for the dynamic solu-
tion. This solution is free of the compressibility constraint and is valid for the simulation of inhomogeneous
flows where the local density depends only on temperature or inhomogeneities effects. For isothermal flows,
this set of equations is equivalent to the classical set of incompressible Navier–Stokes equations. In the prec-
edent studies, the aeroacoustic development strategy showed that the linearized Euler equations can be derived
with their own sources formulation. In this study we focus on the effect of this source term definition on the
acoustic and vorticity response of linearized Euler equations.

In this section we develop the reasoning that lead from the dynamic (LMNA) equation to the propagation
step (LEE) revealing new formulations for acoustic sources.

Since the readers interested in the topic of this paper might not be familiar with the LMNA approach, a
detailed presentation of this model is provided in the following paragraph. We intend here to facilitate the
understanding of the whole physical significance of the source formulation that we discuss here.

2.1. The low Mach number approximation

The low Mach number approximation we are using was initially developed for reacting flows by [15,16].
Being free of acoustic waves, this approximation exhibits the same advantages for hybrid method as an incom-
pressible assumption: the computational requirements associated with multi-scale features are absent for this
model.

To obtain the mathematical formulation of the low Mach number approximation, we start with the fully
compressible Navier–Stokes equations written for a perfect gas flow, without heat sources. These equations,
written for non-dimensional quantities take the form:
oq
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þ oquj
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¼ 0 ð1Þ
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¼ � op

oxi
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where ðx1; x2; x3Þ ¼ ðx; y; zÞ are the cartesian coordinates and ðu1; u2; u3Þ ¼ ðu; v;wÞ are the velocity compo-
nants. p; q; T are, respectively, the pressure, density and temperature. The total energy per unit volume E
and the viscous stress tensor s are, respectively, written
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E ¼ p
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where the conventional summation for repeated index is used and
sij ¼
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oxj
þ ouj

oxi
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3
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The dimensional references are U ref , T ref , Lref , qref , mref . In accordance, the time reference is Lref=U ref . The pres-
sure reference is qrefU

2
ref . Re and Pr are respectively the Reynolds and Prandtl numbers based on the corre-

sponding reference quantities. The Mach number is defined as M2 ¼ U 2
ref=ðcrT refÞ, where c is the ratio of

specific heat at constant pressure and volume, and r is the universal gas constant.
The LMNA is obtained by an asymptotic development of the compressible Navier–Stokes equations for the

vanishing parameter e ¼ cM2. The development in e is defined by the following relations
q ¼ qð0Þ þ eqð1Þ þ � � � ð7Þ
ui ¼ uð0Þi þ euð1Þi þ � � � ð8Þ
T ¼ T ð0Þ þ eT ð1Þ þ � � � ð9Þ
To maintain the coherence of the whole model, the pressure is developed from the perfect gas law (4) in which
we use the Eqs. (7) and (9):
p ¼ qð0ÞT ð0Þ

e
þ qð0ÞT ð1Þ þ qð1ÞT ð0Þ þ � � �
which is used in the following as
p ¼ pð0Þ

e
þ pð1Þ þ � � � ð10Þ
In the following, development is stopped at this stage for p. This slightly different expansion allows us to keep
a physical interpretation of the resulting equations coherent with the reference quantities that allow this
expansion. The dimensional references for pð0Þ and pð1Þ are, respectively, qrefT ref and qrefU

2
ref . Following the

terminology of [16], this leads to a physical interpretation of pð0Þ as a thermodynamic pressure, whereas pð1Þ

will be referred to as a dynamic pressure.
When substituting the flow variables by their expansion expressions (7)–(10) in the compressible Navier–

Stokes equations (1)–(4), we obtain independent systems of equations corresponding to their order in e. They
have to be verified independently at each order, and its only when comparing the result to an actual flow at a
given Mach number that a finite value of e provides their relative importance.

The lowest order for these equations is e�1 for the momentum equation and the energy equation. For this
order the momentum equation is reduced to
opð0Þ

oxi
¼ 0 8i ¼ 1; 2; 3 ð11Þ
This equation shows that pð0Þ, which we recall is to be interpreted as a thermodynamical pressure will be uni-
form in space. This term can be time dependant if we consider a closed domain [17] or stationary if we consider
an open domain, as it will always be the case in the present study.

The equations governing the flow dynamic are obtained at the order e0 and e�1:
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This system is close to a classical incompressible assumption. It can be viewed as an incompressible assump-
tion where the density variations related to non-isothermal effects (described by the perfect gas law (15) and
the energy conservation equation (14)) are allowed to act on momentum and mass conservation equations (13)
and (12). When the initial flow field is isothermal, this system is exactly equivalent to the classical divergence-
free incompressible assumption.

Numerically, this system behaves like a classical incompressible assumption in the sense that, compared
to the compressible system, the equation for the conservation of energy is no longer an equation of evo-
lution. Then, pð1Þ, as well as an incompressible pressure, acts as a Lagrange multiplier, and has to be
obtained via the resolution of a Poisson equation. The details of the numerical procedure for the resolu-
tion of this system are beyond the scope of the present article, and would not give any insight in the pres-
ent analysis. Readers interested by this last point should direct to [14] where the exact numerical
implementation is detailed, and to [16,17] for a general appreciation of the numerical specificities of this
approach.

To name the basics of the resolution, spatial derivatives are estimated by sixth-order compact finite-differ-
ence schemes of [18] and the time integration is performed by an explicit fourth-order Runge–Kutta scheme.
Both of them are frequently employed in Computational AeroAcoustics (CAA) and have proved their ade-
quacy with the requirements of aeroacoustics [2].

The next paragraph shows that the linearized Euler equations can be obtained from the development at the
order e1, using classical assumptions.

2.2. Path from the LMNA to the linearized Euler’s equations

The development of equations at the upper order e1 are
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Up to now, no other assumption than the low Mach number assumption has been made. The model systems,
correspond simply to different order of asymptotic development. In the following, we will introduce the clas-
sical assumptions that are usually made in CAA when using the linearized Euler’s equations.

In the set of equations (16)–(18) ðqð0Þ; uð0Þi ; pð0ÞÞ are instantaneous flow fields given by the resolution of the
CFD equations (12)–(15). In order to have a good estimation of the propagation effect (in the sense of the
terminology of [2]) of a non-uniform flow, it is generally sufficient to consider a steady mean flow associated
with the actual flow. By considering the propagation over a steady mean flow, this set of equations can be
modified by replacing instantaneous flow fields by their time average quantities ðq0; u0i; p0Þ. In this case, the

presence of the term qð1Þ
ouð0Þi
ot is no longer justified in (17). Acoustic waves traveling along a short distance being

hardly affected by viscous effects, it is also justified to drop the viscous terms c�1
Re sð0Þkj

ouð0Þk
oxj
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in (18), and

1
Re

osð1Þij

oxj
in (17). At this stage, two differences remain with the LEE system [19]. First the term �ðc� 1Þuð1Þj

opð0Þ

oxj
,

present in the LEE, is absent in Eq. (18). However, it was shown that pð0Þ is uniform. Secondly, the gradient of
perturbed pressure does not appear in (17) while it is present in the corresponding equation in the LEE system.

Then, modifying (17) while adding on both sides opð1Þ

oxi
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Now, the classical LEE for a small perturbation ðq0; u0i; p0Þ over a steady mean flow ðq0; u0i; p0Þ, can be iden-
tified by replacing in the left hand side of equations (16, 19 and 18) ðqð1Þ; uð1Þi ; pð1ÞÞ with the perturbations
ðq0; u0i; p0Þ. The change in notations we are doing in this part between ðqð0Þ; uð0Þi ; pð0ÞÞandðq0; u0i; p0Þ on one hand,
and ðqð1Þ; uð1Þi ; pð1ÞÞandðq0; u0i; p0Þ on the other hand is of paramount importance. Indeed, all the superscript
�ð0Þand �ð1Þ refer to the asymptotic development of the LMNA. They are free of physical assumption, and in
the theoretical limit where the development is continued to an infinite order, we could get from these values
the real compressible flow. On the other hand, the subscript �0 and prime �0 refer to the conventional superpo-
sition of a mean flow and perturbed quantities.

This distinction being kept in mind, pð1Þ in the left hand side of (19) is to be associated with the perturbed
quantity p0, whereas in the right hand side, it is to be associated with the solicitation, coming from the actual
instationnarity of the CFD solution, generating noise and vorticity. In other words, in the right hand side, pð1Þ

has to keep its full asymptotic development meaning.
Finally, the acoustic production and propagation can be obtained in the present context by solving the

LEE:
oq0
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� �
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It is well established now that the linearized Euler equations can represent accurately the acoustic propagation
in a non-uniform medium by taking into account the refraction and convection effects. Following the termi-
nology of [2] these effects will now be called propagation effects.

The expression of Si is one of the keys of the acoustic analogy. The present development gives the following
forcing term definition to be considered as the acoustic sources
Si ¼
opð1Þ

oxi
ð23Þ
This result have to be linked to the Ribner theory of dilatation [20] who proposes the incompressible pres-
sure of turbulent flows to predict noise. He shows that the effective production of sound is the fact of the
unsteady dilatation of fluid elements, driven by inertial effects. The far acoustic field generated by a quasi
incompressible flow is obtained by considering an equivalent medium at rest containing a spatial distribu-
tion of sound sources. The pressure perturbation in the flow region is split into ‘‘pseudosound” and ‘‘acous-
tic”’ pressure. The pseudosound pressure is associated to inertial forces in the flow and satisfy the
incompressible Poisson equation for the pressure. The dilatation equation is obtained by subtracting the
Poisson equation to the Lighthill equation written in terms of total pressure perturbation. Ribner virtual
source terms is obtained by virtue of isentropic consideration, and would be expressed from the incompress-

ible pressure as � 1
c2

o2pð1Þ

ot2 in our case. However, in the form of a single wave equation, the corresponding

source term of (23) is �r2pð1Þ. This term is similar to the one that derives from the coupling between
the LMNA and the Lighthill analogy in [14]. In Eq. (21), p0 is not split and is the total pressure perturba-
tion, i.e. pseudosound and sound in the flow source region. Moreover, in the context of a LMNA simula-
tion of the dynamic, the definition (23) is available to predict sound both in isothermal and non-isothermal
situations.

By considering the momentum equation of the LMNA system (13), we can write
Si ¼ �
oqð0Þuð0Þi

ot
�

oqð0Þuð0Þi uð0Þj

oxj
þ 1

Re

osð0Þij

oxj
ð24Þ
If we neglect the viscous source term 1
Re

osð0Þij

oxj
– as usually assumed in the case of flow evolving far from solid

boundaries [1] – Si is finally expressed as
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Si ’ �
oqð0Þuð0Þi

ot|fflfflfflfflfflffl{zfflfflfflfflfflffl}
St

i

�
oqð0Þuð0Þi uð0Þj

oxj|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Sq

i

ð25Þ
This source term is consistent with the one defined in [21,22]. Indeed, the divergence of St
i is zero in the iso-

thermal situations and does not affect the acoustic mode. In isothermal case, expression (25) thus reduces to
Sq

i , the quadrupole source term originally derived by Lighthill. Also defined in [22,10], it contains the shear
noise and the self noise and is sufficient for isothermal flows. On the acoustic radiation point of view, anyone
of the source (23) or Sq

i can serve as the vehicle for predicting noise without changing the quadrupolar nature
of source. Conversely, in non-isothermal flows, St

i is not divergence-free, so it contributes to noise radiation.
The entire form (25) of Si is then required.

While limiting ourselves to experimentation in isothermal situations, we are interested in the following sec-
tions to the behavior of the LEE solutions when employing forcing terms Si (23) estimated directly from the
incompressible pressure data and Sq

i (25).
3. Vorticity mode and source term analysis

The general solution of the LEE contains three different modes of perturbation. This decomposition can be
related to the theory of the modes of perturbation introduced by [23] in the general case of viscous flows.

The behavior of each of these modes in the general solution depends on the nature of the mean flow, and on
the nature of the source terms. In the general situation of a non-uniform mean flow, a lot of cases were
reported where the vorticity mode (sometimes called hydrodynamic mode, or instability wave) leads to a
non-physical solution, or to an unstable simulation. Indeed, these three modes are really present in the flow.
Then each of them has to be well represented in a DNS. The vorticity mode is a convective mode which grows
downstream of the region where it is created. In a real flow, its growth is limited by non-linear interactions and
viscous effects. With an hybrid method, the interactions between these different modes and the evolution of
each of them taken separately can be slightly different than in a physical flow such as modeled by a DNS.
The vorticity mode is very well represented by the first step of the hybrid method (here the LMNA simulation)
but the non-linear terms and the viscous effects are absent in the second step. It explains why the growth of this
term in space and time is physical in a real flow but unphysical in the propagation step where in extreme cases,
it can make the simulation unstable.

Several attempts have been made by previous authors to circumvent this issue. In the past, authors have
dealt with this issue by modifying the propagation operators in such a way to control or prohibit the devel-
opment of the vorticity mode [8,7,10–12].

All these works consider that the issue results from the fact that the solution of the LEE contains the vor-
ticity fluctuations. This is true, but we rather think that the difficulties arise when the vorticity fluctuations are
over-excited by improper source terms. By improper source terms we mean source terms that are properly
designed to excite the acoustic mode but excessively excite the vorticity mode.

Here we are considering the use of Si defined in (23) to fix this problem. We will show that by using Si,
which is an irrotational field, the vorticity mode observed in the numerical resolutions is dramatically reduced.
The use of the complete LEE is possible with appearance of contained and limited vorticity modes in numer-
ical solutions.

The presence of the vorticity mode in the LEE solution can be allotted to two different processes. The vor-
ticity can be either created by the source term itself or can result from interactions between any other mode
(acoustic, entropic) and a non-uniform mean flow. Subsequently, if the mean flow is uniform, the vorticity
results only from the source term itself; If the source term has an irrotational formulation, it cannot excite
the vorticity mode and there will be no vorticity created in the flow. However, in the general case of a non-
uniform mean flow, the vorticity mode can result both from an excitation coming from the formulation of
the source terms which is not irrotational and from interactions between the mean flow and other modes
of fluctuation. Thus, in the situation where the rotational of the source term is controlled to zero, the only
vorticity generation in the solution of the LEE will result from modes interactions in non-uniform mean flow.
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The source term Sq
i (25), deriving from the velocity components computed from an incompressible DNS, does

not have reasons to be rotational free, while Si, by definition (23), is rotational free. As a consequence, driving
the LEE with Si instead of Sq

i should limit the presence of vorticity mode. Given that Si could be evaluated by
(24), or by (25) when neglecting viscous terms, and given that the divergence of St

i is null (if the density is con-
stant), the divergences of SiandSq

i are precisely the same. According to what was written in this section, it is
clear that driving the LEE with Si instead of Sq

i can reduce one of the major difficulty inherent to the LEE
linked to the presence of the vorticity mode. Besides, the acoustic solution should not be altered in any
way since the divergence of the pressure gradient is exactly the same as the divergence of the source term pre-
viously used by other authors. Rather than to calculate Si using velocity components (25), it is of course more
effective to compute straight from the hydrodynamic pressure as it was done in the following numerical tests.

4. Numerical results

As mentioned above, the LMNA equations are equivalent to the incompressible equations when the density
is supposed constant. This allows to use Si as well as Sq

i to define acoustic source terms on the solution
obtained with an incompressible Navier–Stokes solver. We recall that Sq

i solutions have been validated with
direct acoustic computation in situations where vorticity generation was not critical [24]. Some numerical sim-
ulations have been carried out to illustrate the response of LEE in density and vorticity. The sound field and
the vorticity field resulting from LEE solution are then compared.

4.1. Sound radiated by the pairing of two co-rotating vortices

An incompressible direct numerical simulation is achieved to simulate the flow consisting in the motion of
co-rotating vortices. The configuration of the flow shown in Fig. 1 was presented by [25]. We use the model of
Scully vortex, where the distance between the two vortices at the beginning is 2r0 ¼ 20 and the radius rc ¼ 2 in
this all part, Lref is chosen so that rc ¼ 2Lref and U ref ¼ c0 (where c0 is the speed of sound). The Mach number
M of the flow based on the maximum tangential velocity of the vortex is M ¼ 0:5.

The dimension of the numerical box is Lx� Ly with a uniform grid consisting in nx� ny nodes. Sixth-order
compact scheme was used and third order Runge–Kutta scheme with time increments of dt ¼ 0:6. Two sizes of
numerical domain were tested: 140� 140 with 320� 321 nodes and 240� 240 with 600� 601 nodes.

Fig. 2 shows four instantaneous fields of vorticity obtained with the incompressible simulation, from the
beginning of the simulation to an instant when the vortices are merged.

The results of the flow simulation, i.e., the instationary velocity components, are used to determine the forc-
ing terms Sq

i while Si is given by the pressure gradient. One on four time steps and one on two nodes in both
directions are retained in the LEE simulation. A larger numerical domain is considered to get the acoustic fluc-
tuations away from the source region which is centered in this domain. In all the cases presented here, the
acoustic region extent is Lx0 � Ly0 ¼ 1000� 1000. We now consider several situations with no mean flow, a
uniform flow, and a sheared mean flow and discuss the behavior of the solution for each solicitation.
Fig. 1. Flow configuration for the pairing of two co-rotating vortices.
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Fig. 2. Vorticity field obtained with the incompressible simulation at four different instants on the smaller domain (140 � 140). Levels are
from �0.12 to �0.005 by step 0.005.
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4.1.1. Case 1: no mean flow

With this case, we first analyze the dependency on the size of the source domain and the truncation error for
both source terms Si and Sq

i . Indeed, Si is known to decrease rather slowly compared to Sq
i [26]. Thus, a higher

sensitivity to the size of the source domain is expected for Si. Fig. 3 shows the density field at the same instant
with Si and Sq

i .
The source domain size is exactly the size of the DNS domain. The small domain show relatively different

patterns with Si and Sq
i . A close look at the figure corresponding to Si (top right of Fig. 3) shows pronounced

lobes that suggest a truncation of the source term in a region where it is not completely vanished. This would
confirm the well known argument against the use of pressure as an acoustic source term for incompressible
flows. The extended domain presents the closer pattern with Sq

i .
This is confirmed by instantaneous profiles of the density along a line at y ¼ 200 presented in Fig. 4. On the

large domain, Si and Sq
i provided very similar profiles in shape (Fig. 3) and amplitude (Fig. 4). This difference

in amplitude can be considered small enough for the purpose of the present investigation in which we focus on
the control of the vorticity mode.

Provided that the source domain is large enough, it is then possible to use the incompressible pressure gra-
dient as forcing term to lead to a correct acoustic solution.

4.1.2. Case 2: uniform mean flow ux ¼ 0:5
The computed sources are now used as forcing terms for LEE with mean flow condition set to a constant

value ux ¼ 0:5. Fig. 5 represents for each source term the density in the acoustic region and the vorticity in the
source region. According to part 3 the created vorticity is vastly reduced (even not visible at this scale) when
source term Si is used.

The acoustic fields are very similar. We can also notice that in the case where vorticity is created at the vor-
tices location, this vorticity does not increase while convected downstream. This is consistent with the theory
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Fig. 8. Sheared mean flow: vorticity field obtained with Si for the full or reduced LEE operator. Values are one tenth of Fig. 7 from
�0.001 to 0.001 with a step of 0.0005. Straight lines: x0z > 0; dashed line x0z < 0.
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5. Conclusion

In this explorating study, numerical simulations show that it should be possible to use the gradient of
incompressible pressure as acoustic source term in the context of solving linearized Euler equations. This
choice can significantly reduce the problems caused by the generation and amplification of vorticity mode
in sheared flows. This source term is rotational free. An academic test case has been designed to prove the
efficiency of this approach. Drawback of non-compactness of dynamic pressure fluctuations induced by more
compact acoustic stress field led us to oversize the source domain and to envisage more elaborated source trun-
cation strategies not developed in this paper.
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Ecole Centrale Paris, 1998.
[9] M.E. Goldstein, A generalized acoustic analogy, J. Fluid Mech. 488 (2003) 315–333.

[10] C. Bogey, C. Bailly, D. Juvé, Computation of flow noise using source terms in linearized Euler’s equations, AIAA J. 40 (2) (2002) 235–
243.
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